Style-2.ru

Все про авто

Можно ли создать «идеальную» подвеску?

Можно ли создать «идеальную» подвеску?

Статья о разных видах активной подвески: пневматическая, гидропневматическая, KDSS, DD, AGCS. В конце статьи — забавное видео об «идеальной» подвеске.

К сожалению, до последнего времени все виды подвесок, применяемые в «бюджетных» авто, были стандартными, то есть могли либо обеспечить высокий уровень управляемости автомобилем либо комфортную езду по неровным дорогам. И лишь дорогие модели могли похвастаться так называемой «активной» подвеской, которая в той или иной мере решала обе проблемы.

Активная подвеска – приближение к идеалу

Как известно, ходовая часть авто может отличаться жёсткой подвеской — в этом случае крен кузова будет минимальным, а степень управляемости высокая. Мягкая же подвеска привнесёт мягкость хода в движение, но резкие маневры станут опасны. Как найти «золотую середину»?

Производители пришли к выводу, что оптимальным решением будет активная подвеска. Название говорит само за себя: конструкция должна уметь изменять свои характеристики в процессе движения автомобиля.

Преимущества

Процесс создания и усовершенствования активной подвески длится уже давно. Первая модель была установлена на Citroёn французскими инженерами. Немногим позже эстафету приняли проектировщики Mercedes-Benz. Преимущества введённого новшества очевидны:

  • активная подвеска дала машине возможность автоматически подстраиваться под неровности дороги;
  • крен автомобиля при движении уменьшился, а следовательно, маневренность стала выше;
  • конструктивные особенности подвески позволили адаптировать ряд характеристик авто к стилю вождения.

Изначально громоздкая и сравнительно примитивная, активная подвеска со временем сменила габариты на более компактные, а своё устройство – на более сложное.

Элементы, входящие в состав активной подвески

Механизмы, составляющие функциональный узел подвески, можно условно разделить на четыре основные группы. Принцип разделения — в разновидностях элементов. Для каждой группы существуют свои характеристики, которые могут быть адаптированы в процессе движения:

  1. Упругие элементы. Адаптивные характеристики – величина жёсткости подвески и высота автомобильного кузова над дорожным полотном.
  2. Рычаги. Адаптивные характеристики – характеристики схождения колёс и длины регулирующих подвеску рычагов.
  3. Поперечные стабилизаторы. Здесь доступен только один изменяемый параметр – степень жёсткости стабилизатора.
  4. Амортизаторы. Изменяемая характеристика – степень жёсткости амортизатора.

Главный смысл установки активной подвески на машину – в способности изменять все перечисленные параметры по мере того, как изменяется скорость движения, стиль вождения, характер дорожного покрытия, на котором происходит движение автомобиля.

Сделать это можно по-разному, в зависимости от типа узла. Среди применяемых способов – такие, как активизация электромагнитных клапанов, установленных в амортизационной стойке, а также изменение объёма магнитной реологической жидкости, наполняющей амортизатор.

Электронное оборудование позволяет изменять характеристики каждого элемента активной подвески в отдельности. Именно благодаря такому функционалу подвеска становится «идеальной», то есть, приспосабливается к постоянно изменяющимся условиям в процессе движения.

Виды и принципы функционирования современных подвесок активного типа

Современные разработчики активных подвесок уделают большое внимание узлам с возможностью корректировки степени демпфирования. Если в подвеске для адаптации характеристик не применяются специализированные приводы, такая система носит название «адаптивная», или «полуактивная» подвеска.

Принцип работы активной гидропневматической подвески

Рассмотрим, как функционирует гидропневматическая подвеска ABC от конструкторов Mercedes-Benz. На одной оси каждым амортизатором в системе установлена пружина; на неё оказывает воздействие гидравлическая жидкость из гидроцилиндра. Жёсткость каждой пружины корректируется автономно при помощи насоса, который под высоким давлением нагнетает в стойку амортизатора масло.

За гидроцилиндрами амортизационных стоек следит электронная система, получающая информацию от тринадцати электронных и аналоговых датчиков. От них поступают такие данные:

  • продольное автомобильное ускорение;
  • поперечное автомобильное ускорение;
  • вертикальное автомобильное ускорение;
  • положение автомобильного кузова относительно плоскости дороги;
  • давление на стойки и шины.

Система работает таким образом, чтобы исключить резкий крен кузова при разгоне, торможении и поворотах.

Разработчики могут похвастать впечатляющими результатами: начиная со скорости в 60 км/ч данная система может понижать клиренс авто на 11 мм. Это отличный показатель корректировки аэродинамических свойств машины.

Привод высокого давления на гидравлической основе применяется также в автомобилях Citroёn. Здесь в основу положено всё то же нагнетание гидравлической жидкости в механизмы при помощи работы электромагнитных клапанов.

Читать еще:  Сальник кулисы ваз 2110

Принцип работы активной пневматической подвески

Пневматические элементы в конструкции подвески отвечают за клиренс авто. Регулировка степени давления в подвесном узле обеспечивается за счёт сжатого воздуха, накачиваемого в конструктивные элементы. Системы, действующие по данному принципу, используется той же компанией Mercedes-Benz.

Говоря о минусах данной подвески, нужно обязательно упомянуть тот факт, что если пневматическая подвеска при каких-либо обстоятельствах получила пробоину, автомобиль моментально опустится днищем на дорогу и, естественно, не сможет возобновить движение.

Принцип функционирования подвесок KDSS и DD

Производители Toyota и BMW предлагают модели, оснащённые подвесками, в которых главным изменяемым параметром выбрана жёсткость стабилизатора поперечной устойчивости. На прямом участке движения стабилизатор поперечной жёсткости отключается, а при входе в резкий поворот его жёсткость увеличивается, чем предотвращается кузовной крен.

Принцип работы AGCS-подвески

Разработчики Hyundai создали, пожалуй, самую неординарную на сегодняшний момент активную подвеску. В основе функционирования системы – возможность смены длин рычагов, которая влияет на схождение задних колёс. При движении по прямой электронное управление устанавливает минимальный уровень схождения. Смена полосы или вхождение в поворот приводит к увеличению схождения. Такой подход очень повышает устойчивость автомобиля и облегчает водителю процесс управления.

Активная подвеска для «народного» авто: отдалённая перспектива или реальность?

Традиционно активные подвески применяются в автомобилях премиум-класса. Это естественно, если принять во внимание сложность и высокую стоимость механизма. Подавляющее большинство недорогих моделей авто по сей день решают проблемы неровности дороги при помощи обычной подвески.

В данной модели подвески применяется 12 датчиков, которые каждые 2 миллисекунды докладывают бортовому компьютеру информацию о положении кузова и состоянии амортизаторов. Получив вводную о существенном ухабе или выбоине, компьютер посылает системе команду на изменение жёсткости амортизатора. Внешне это выглядит следующим образом: амортизатор колеса, которое начинает проваливаться в яму, становится жёстким, «зажимается» и не доходит до нижнего положения.

Такая подвеска не имеет всей полноты функций устройств, которые ставятся на дорогостоящие модели автомобилей, но, тем не менее, имеет все возможности для того, чтобы стать востребованной средним классом потребителей.

Заключение

Сложность конструктивных решений при разработке активной подвески обуславливает её высокую стоимость. Но разработчики активно двигаются вперёд, при всей сложности агрегата стоимость его постепенно удешевляется и становится доступной более широкому классу автомобилистов. Стремление к комфорту и безопасности на дорогах не позволит инженерам остановиться на достигнутом, и можно с уверенностью сказать, что «идеальная» подвеска в скором будущем станет нормой для ведущих производителей автомобилей, независимо от класса выпускаемых авто.

Видео об «идеальной» подвеске:

4КОЛЕСА

Популярные статьи

Мягкость и жесткость подвески – что важнее для комфорта?

Практически каждый автовладелец уверен в том, что мягкая подвеска дает комфорт, а жесткая делает машину спортивнее и позволяет лучше держаться за дорогу. Но как и во многих других случаях, упрощение лишь вводит в заблуждение.

Специалисты-подвесочники могут рассказать множество интересных примеров из практики, а мне придется ограничиться лишь кратким рассказом о том, почему жестче не всегда цепче, а мягче не всегда комфортнее. Работа подвесок машины вовсе не так проста, как кажется на первый взгляд.

А вообще, о работе подвесок написано много книг, и большинство из них очень толстые. Я попробую лишь “по верхам” обозначить основные моменты, чтобы уложиться в формат познавательной статьи.

Почему без подвески не обойтись

Даже очень ровные дороги на самом деле имеют изгиб по многим направлениям, да и сама Земля мало похожа на бесконечную плоскость. И чтобы все четыре колеса касались поверхности, они должны иметь возможность перемещения вверх и вниз. При этом крайне желательно, чтобы беговая поверхность колеса прилегала к покрытию всей своей шириной при любом положении подвески. Так что машины, у которых подвески жесткие и короткоходные, практически обречены на плохое сцепление колес с дорогой, ведь всегда одно из колес будет разгружено.

Читать еще:  Рублевая цена нового Mercedes

Почему подвеска должна иметь ход сжатия

Для контакта всех колес с дорогой вовсе не обязательно, чтобы подвеска могла сжиматься, достаточно того, что колеса смогут двигаться только вниз. Но при движении машины в поворотах возникают боковые силы, которые стремятся наклонить авто. Если при этом одна сторона машины сможет приподниматься, а другая не сможет опуститься, центр тяжести авто сильно сместится в сторону загруженного колеса, что в свою очередь вызовет много негативных последствий.

В первую очередь еще большую разгрузку внутреннего по отношению поворота колеса и увеличение момента крена из-за перемещения центра тяжести вверх относительно центра крена подвески (о нем ниже). И, разумеется, если у колес нет хода сжатия, то даже маленькая неровность под одним из колес должна вызывать перемещение кузова, перемещение всех остальных колес вниз со всеми связанными затратами энергии на подъем и снижением сцепления колес. Что, мягко говоря, не слишком комфортно. А еще разрушительно для кузова и деталей подвески. В общем, подвеска должна быть сбалансированной, иметь ход сжатия и ход отбоя для нормальной работы.

Почему машина кренится в поворотах

Раз уж мы определились с тем, что подвеска у машины должна быть и имеет возможность перемещения вверх-вниз, то чисто геометрически образуется некая точка, центр, вокруг которой поворачивается кузов машины при крене. Эта точка называется центром крена машины.

Собственно, расположение центра крена зависит от конструкции подвески. И автомобильные инженеры неплохо научились его “поднимать” повыше, изменяя конструкцию рычагов, что в теории могло бы избавить от кренов не только низкие спортивные авто, но и достаточно высокие. Проблема в том, что подвеска, сконструированная для обеспечения “неестественно задранного” центра крена, успешно борется с наклонами кузова, но при этом плохо справляется с основной задачей – демпфированием неровностей.

Почему подвеска должна быть мягкой

Достаточно очевидно, что чем мягче подвеска, тем меньше изменение положения кузова при наезде на неровность и при крене меньше распределяется нагрузка между различными колесами. А значит, и сцепление колес с дорогой при этом не ухудшается и не расходуется энергия на перемещения центра масс машины вверх-вниз. Что же, мы нашли идеальную формулу? Но, к сожалению, не все так просто.

Во-первых у подвесок ограничены ходы сжатия, и они должны быть согласованы с изменением нагрузки на ось при загрузке машины пассажирами и багажом, и с нагрузкой, возникающей при прохождении поворотов и неровностей. Слишком мягкая подвеска при повороте сожмется так сильно, что колеса с другой стороны оторвутся от земли. Так что подвеска должна не допустить исчерпания хода сжатия с одной стороны и вывешивания колеса с другой.

Получается, что слишком мягкой подвеске быть тоже плохо… Оптимальным вариантом является сравнительно небольшой диапазон “мягкости”, после чего подвески становятся жесткими, но настроить такую конструкцию тем сложнее, чем выше разница между жесткой и мягкой ее частью.

При любом перераспределении нагрузки между колесами происходит ухудшение общего сцепления колес с дорогой. Дело в том, что догрузка одних колес не компенсирует все потери при разгрузке других. А в случае вывешивания разгруженных колес увеличение сцепления на догруженной стороне не компенсирует и половины потерь.

Помимо общего ухудшения сцепления, это еще и приводит к ухудшению управляемости. Борются с этим неприятным фактором, изменяя наклон плоскости качения колеса относительно дороги — так называемый развал. В результате конструктивных мероприятий, направленных на программирование изменения развала при крене машины удается компенсировать изменение сцепления колес при поперечных нагрузках в разумном диапазоне и тем самым сделать управление машиной проще.

Почему же приходится делать подвески жестче на спортивных машинах?

На управляемости машины крайне негативно сказываются любые изменения углов установки подвески при кренах машины и задержки в откликах на управляющие воздействия из-за смещения центра тяжести. А значит, приходится делать подвески жестче, чтобы в повороте крены уменьшались.

Читать еще:  Нива шевроле не заводится

Крайним выходом является мощный стабилизатор поперечной устойчивости — торсион, который препятствует перемещению колеса одной оси относительно другого. Но это не самый лучший способ. Да, он улучшает ситуацию с изменением углов установки колес в повороте, но зато разгружает внутреннее, по отношению к повороту, колесо, и перегружает наружное. Немного лучше просто сделать подвеску жестче. Это больше сказывается на комфорте, но зато не так разгружает внутреннее колесо.

Немалое значение амортизаторов

Помимо упругих элементов, в подвеске машины присутствуют и газовые или жидкостные амортизаторы — элементы, ответственные за гашение колебаний подвески и вывода энергии, которую машина тратит на перемещения центра масс. С их помощью можно подправить все реакции подвески на сжатие и отбой, ведь амортизатор может обеспечить в динамике куда большую жесткость, чем пружина. При этом его жесткость, в отличие от пружин, будет очень разной в зависимости от хода подвески и скорости ее перемещения.

Разумеется, совсем мягкий амортизатор не сможет выполнять свою основную задачу — гашение колебаний, машина попросту будет раскачиваться после прохождения неровности. А установка очень жесткого будет создавать эффект, схожий с установкой очень жесткой пружины, которая не хочет сжиматься и тем самым увеличивает нагрузку на колесо и разгружает все остальные. Но тонкая настройка поможет уменьшить крены в поворотах и помочь пружинам, уменьшить клевки кузова при разгоне и торможении и при этом не мешать колесам проезжать мелкие неровности. И разумеется, не допускать “пробоя” подвесок при проезде жестких неровностей. В общем, воздействие на поведение машины они оказывают не меньшее, чем жесткость пружины.

Немного о комфорте и частотах колебаний

Понятно, что у машины без подвески комфорт был бы нулевой, ведь все мелкие неровности от дороги передавались бы прямо на ездоков. Бр-р. Но если подвеску сделать очень мягкой, то ситуация станет ненамного лучше — постоянная раскачка тоже крайне плохо сказывается на людях. Оказывается, человек плохо переносит колебания как с небольшой амплитудой и большой частотой от жесткой подвески, так и с большой амплитудой и с малой частотой от мягкой.

Для создания комфортных условий для пассажиров необходимо согласовать жесткость пружин, амортизаторов и покрышек так, чтобы на самых ходовых для этой машины покрытиях частоты колебаний пассажиров и уровень ускорений оставались в комфортных пределах.

Частота и амплитуда колебаний подвески важны еще и в другом аспекте — собственные частоты резонанса системы машина-подвеска-дорога не должны совпадать с возможными частотами управляющих воздействий и возмущений от дороги. Так что задача конструкторов заключается еще и в том, чтобы обойти опасные режимы как можно дальше, ведь в случае резонанса можно и машину перевернуть, и потерять управление, и просто поломать подвески.

Итак, какой должна быть подвеска?

Как это ни парадоксально, но чем мягче подвеска, тем лучше сцепление колес с дорогой. Но при этом она не должна допускать сильных кренов и изменения пятна контакта колес с дорогой. Чем хуже дороги, тем более мягкой должна быть подвеска для получения хорошего сцепления. Чем ниже коэффициент сцепления колес, тем мягче должна быть подвеска. Казалось бы, проблему может решить установка стабилизатора поперечной устойчивости, но нет, у него тоже есть свои негативные черты, он делает подвеску более “зависимой” и уменьшает ход подвески.

Так что настройка подвески остается делом для настоящих мастеров и всегда требует много времени на натурные испытания. Множество факторов затейливо переплетаются и, изменив один параметр, можно ухудшить и управляемость, и плавность хода. И не всегда жесткая подвеска делает машину быстрее, а мягкая — комфортнее. На управляемости сказывается и изменение жесткости передней и задней подвесок относительно друг друга и даже малейшее изменение характеристик жесткости амортизаторов. Надеюсь, эта статья поможет более тщательно относиться к выбору комплектующих для подвесок и предотвратит необдуманные эксперименты.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Ссылка на основную публикацию
Adblock
detector